TDA Progress Report 42-80

October—-December 1984

Performance of the DSA’s Subcarrier
Demodulation Digital Loop
M. K. Simon

A. Mileant

Telecommunication Systems Section

The subcarrier demodulation digital loop is part of the Baseband Assembly. The sub-
carrier demodulator is a fourth-order Costas-type loop. It corresponds to a “type 2"
analog loop in terms of steady state response. In this article, the expected value and the
variance of the error signal are determined as functions of the input SNR. A Nyquist
sampling rate of the input signal is assumed. From the integro-difference equations a
mixed s/z domain block diagram is obtained. From the loop’s transfer function a set
of gains for the loop filter is obrained. Also, a set of state equations is presented for
future reference. Finally, the noise-equivalent bandwidths are calculated for normalized

computation times of 0, 0.25 and 0.5.

The subcarrier demodulator analyzed in this article tracks a parabolic phase input with
finite steady state error. Since at each update instant the loop gains are adjusted to com-
pensate for the variations in SNR of the input signal, the noise-equivalent bandwidth is

maintained constant.

l. Introduction

The subcarrier demodulation digital loop is part of the
Baseband Assembly (Ref. 1). The subcarrier is demodulated by
a Costas-type fourth-order digital loop. The input to this loop,
which comes from the real-time combiner (RTC), consists of a
string of unitless numbers whose values are proportional to the
signal and noise amplitudes. For analysis purposes, it is conve-
nient to assume that sampling of the input signal occurs at the
Nyquist rate. This is justified by the fact that, according to
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measurements made by Larry Howard (private communica-
tion), oversampling does not appear to improve or degrade the
SNR of the loop’s error signal.

In this article, the topics are subdivided as follows:

(1) Error Signal Statistics

(2) DCO Board Transfer Function

(3) Phase Detector Averages



(4) Closed Loop Transfer Function

(5) Determination of Gains A, B, C,and D

(6) Steady State Error

(7) Derivation of the State and Output Equations
(8) Noise-Equivalent Bandwidth

ll. Error Signal Statistics

The input to the subcarrier demodulation loop (Fig. 1)
comes from the RTC. This input can be modeled as a string of
samples as follows:

y; = s;tn, (1)

where s; is a unitless random variable whose value is propor-
tional to the signal amplitude of the /" sample, and #, is a
unitless random variable whose value is proportional to the
noise amplitude of the it sample.

The signal tracked by the loop is a squarewave subcarrier of
N, Nyquist samples per cycle BPSK modulated by binary
random data with V; Nyquist samples per symbol. The mean
of the /™ sample is given by

E{s;} = b]. VS cos 0, (2)

where b; = *1 is a random variable equal to the sign of the jth
binary data symbol.

The noise is modeled as a random process with zero mean
and variance per sample 0, 2. The instantaneous phase of the
input signal is 6.

In the tracking mode, the subcarrier digital phase-locked
loop produces an estimate of the input phase, 0, with an
instantaneous error

¢, = 0.0, (3)
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To proceed with this analysis, it will be convenient to define
the normalized phase error

u, = —= 4)

with half symbol average

N
- i E (5)
Uy N -

and one update period average (K symbols per update)
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un = ﬁ Zu
k=1
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Here T, is the update time interval.

u(t)de (6)

Referring to Fig. 1, the expected value of the outputs of
the in-phase and quadrature arms will be, respectively (assum-
ing loop operation in the linear region),

X, = bK, VS (1-lu,l) @)
X, = bK, VSu, (8)

The outputs of the / and @ summers, which add up N,/2
samples, will have means

—bK\/— (1-1lu, 1) (9)

N
— _ = s _
Xop = bK, VS 5w k=1,2,0026 (10)

and variances due to thermal noise

2 2 N 2
o, =K, 5> Un an
2 2 NS 2
oo’ =Ky 025 k=12,...2K  (12)

Finally, the error signal ¢, at the output of the third
summer, which adds up 2K half-symbol samples, will have
mean value

e = 2Kx x =

K 2
. o = KK KNS u, Du, (13)

because b/'2 =1 forall/.

The variance at the input to the third summer will be

o 2“E[(x

2
10k K, (14)

X = (i X ,)°)
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= (o oka + ()_Clk)z OQk2 +(}Qk)2 011<2)K32 (15)

The variance of the output of the third summer will be

2K
2 _ 2
O Eole (16)
k=1
— K 2 2 2 2 4
“3K1 K, "Ky N o,
K12 2K
Tl p2p2 32 _ 2
t— KKPSN o, (Z(l Iukl))
k=1
K12 2K
Tl op2p2 3.2 2
+— KPKPSNG o, (Z uk) (17)
k=1

Since the assumption of operation in the linear region
implies a high loop SNR condition (small values of «, ), then it
is convenient to let u, =0 in (17), which gives the approxima-
tion

K , K
2 - 2p 2 2 N2, 4 2p 2 2 3.2
o —2K1 K,"K,* N~ o, +4K1 K,"K,“SN~ o,

€

SN
§

(18)

e | X

2 28 2 A2 . 4
K"K, °K, Noo 1+ S
20

n

Furthermore, for small ,, the normalized loop tracking curve
glu,) = (-lu,Du, (19)

can be approximated by
glu,) = u, (20)

whereupon the mean of the error signal at the third summer
output, as given by (13), becomes

2n
with

' é 2
Gy~ KK K KNS S2 (22)

IIl. DCO Board Transfer Function

Referring to Fig. 1, the CPU reads the error signal ¢, every
T, seconds (i.e., NK samples), and at the input of the DCO
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board produces increments of phase rate according to the
following algorithm:

MO = Ae, +Be,  +CAO,  +DAG,  +EF, (23)

where A, B, C, and D are gains to be determined, and 5,1 is the
estimate of the phase acceleration and is an external input to
the digital loop. In this analysis, it will be assumed that £ = 0.

Assuming zero initial conditions, Eq. (23) can be expressed

in the z-domain as
M) (1-C -Dz %) = e(z)(A+27'B)  (24)
It should be noted that Eq. (24) assumes zero computation
time: i.e., as soon as the CPU reads ¢,,_, » it produces 8,,. The

actual delay between reading €,_, and producing Aén will be
accounted for further on in this analysis.

The transfer function F(z) of the blocks designated in our
analysis as the “loop filter” is, from Eq. (24),

_ 86() . (Az+B)z

F(z) ) @.c D) (25)

The phase rate of the DCO’s output is constant during one
update period, and its sampled value equals (see Fig. 2(b))

6, =04+ ZAB (26)
=1
The transfer function for a DCO is
i) 1
s -e ©
5(2) = ) (27a)

N

Our subcarrier demodulation loop has, in addition, a summer
built on the DCO board. Taking this into account, the total
“DCO board” transfer function becomes

-sT
0(s) _ (1l-e A W
Ab(z) &2 z-1

IV. Phase Detector Averages

(27b)

The phase rate error process ¢(¢) is shown in Fig. 2(a). At
frequency update instants, it is expressed by the following
difference equation



by = 6y ¥ 1,0, ~ A9, (28)
with
T, = T,+T, (29)
where
I, = the frequency update period in seconds, and
Tc = TLg, the computation time, in seconds, with

0<g<1. (30)

The phase error process ¢(¢) at frequency update instants

is obtained by integrating ¢(¢) between t,_,andz namely

ol

(31)

Referring to Fig. 2, we want to find the integrated phase
error over one update period

t 1+ Tg

6, = fn o(r) dt +f o(r) dt (32)
t -T t

n ¢ n
The algebra in finding (I—)n is straightforward but a little lengthy.

It can be shown that

— 1 .
6,= T, (% +2 T, (1-29)9,

T,
1 . L .
t e T? (1-3g+38%) ¢, - - s Aen) (33)

where the normalized computation time g is defined by (30).

Using (33) together with (4), the normalized average phase
error corresponding to Eq. (6) is

-_2 =
un—— WTL ¢n
A
= T
L
('nTL ¢
TL Tz 2 TL 2 ¢n
X 11 —2(1—2g) ?(1—3g+3g) —-2—g ¢n
;
n
(34)

or

u = (—2) T -0 (35)

77TL

where T’ is the row vector of (34) including the multiplication
by T, ,and @, is the rightmost column vector.

V. Closed Loop Transfer Function
Combining Egs. (21), (32) and (35), we get

t +T

9 R
€, = GQ TI—‘IT o(t) dt (36)
’ n e
=G, =T (37)
eT, n

The z-transform of the output C, of an integrate-and-dump
device with gain G and continuous input R(#) is, according to
Ref. 2,

) = GE;—I(R—S@> (38)

where R(s) is the Laplace transform of R(¢) and the asterisk
denotes a z-transform. Letting

2
2 B KK K,K.N”S

G, =G, = (39)
Q Q TLTr TL7T
then from (37) and (38), we obtain
-\ z-1{ds)\"
E(Z) = GQ Z (—S—) (40)

where ®(s) is the Laplace transform of ¢(¢).

The time delay between the instants in which the error
signal ¢, is read and the phase rate update Ag, is produced,
is modelled as

D(s) = ¢ & (41)

Equations (25), (27), (40) and (41) now can be combined to
give the block diagram of Fig. 3, which is a hybrid Laplace
z-transform equivalent representation of the subcarrier
demodulation loop.
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Referring to Fig. 3,

~-gT_ s

~ L -5
(42)
g7, s
_0©)_ poae *

N

—~sT _
becausee ~ L Az L

Taking the z-transform on both sides of (43),

OO N A}
x@) = (B7) = (22) - 20 (S—)  @e)

s
In general, given a function L(s), we always have
-aTs
e © L®]* = L(z,m), m=1-g (45)

where L(z, m) is the modified z-transform of L(s).

Using this property in (44),

- (2]

T,*[mz? +(2m~- 2m?+ D z+(m- 1)?]

A6(2)
2Az-1)3
(46)
or
- (0
s
T [(1-8°22 +(1+2g-28%)z+g*] -
- A8(z)
2(z- 1)3

(47)

Combining Eqgs. (25), (40) and (47), the block diagram shown
in Fig. 4 is obtained.

The open loop transfer function corresponding to Fig. 4 is
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8,(2)

G(z) = X@)
2,2 ~92) 5 4 o2 +
LU (% )2 NA D)
(z- 1)? (2% - zC- D)
where
T,’
G = _2 GQ (49)
The closed loop transfer function is
0,
HE) =5 = 2 (50)

0,(2) T 1+G6G(2)

_G((1-gz2 +(1+2¢-2¢%)z+£°) (24 + B)

H(Z) 4 3 2 2
2 +23(GA(1 -g)* -C-2)+22 (1+2C-D

YGA(1+28-282)+GB(1 -8

+z(2D - C+GAg* + GB(1 +2g - 2g%)) - D + GBg?
(51)

The denominator of (51) is designated as the characteristic
polynomial of the loop, which we define as C(z).

VI. Determination of Gains A, B, C and D

For stability, we want the poles of H(z) to be inside the
unit circle. To avoid instability and oscillation problems when
the gain G changes slightly for whatever reasons, we choose to
place all four poles on the real axis such that

p, p, = small negative number

and (52)

p, = p, between 0.3 and 0.7.

As such, poles p; and p, will determine the transient response
of the closed loop. Using (52), let

Cz) = (z-p)* (z-py)?

2 +2(-p, -p,) 2> + (0} +4pp, +p}) 2

+2(-p,p3 - Pip}) 2+ P2 p? (53)



Equating the coefficients of equal powers in the poly-
nomials of Eq.(53) and the denominator of (51), we obtain
four equations with four unknowns which can be written in
the following matrix form

- Tar

1
G(1 - g)? 0 -1 0] 4 (13+2-1
G(1+2g-28%) G(1 - g)’ 2 1| | B a, -1
Gg* G + 2~ 2¢%) 12 Cl=] q
0 Gg? 0o -1||D a,
(- - L - ~ -4
(54)
where, from (53), we have
— 2,2
4y T PPy
- 2 2
a, =-2p,py" *+p,°py)
— 2 2
a, = py” t4ppyt o
ay = ~2p, *+p;) (55)

Table 1 gives values for the gains 4, B, C and D when G = 1.0,
p, =-0.1, p; =0.6and g=0,0.25 and 0.5.

The root locus diagrams for g =0 and g = 0.5 for G chang-
ing between O (open loop) to 2 (unstable loop) are shown in
Fig. 5. As we see from this figure, when nominal total loop
gains GA, GB are selected, two pairs of poles at -0.1 and two
pairs of poles at 0.6 are obtained. In both cases (g=0 and
g=0.5) the loop will lock without oscillations. The settling
time, ¢, will be determined by p; and p, and will be, in our
case,

4T,
N - ]np3
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t = 7.8 seconds (56)

it 7; = 1second.

The Nyquist plot corresponding to the selected nominal
gains for g=0 is shown in Fig. 6 and the Bode diagram in
Fig. 7. For nominal loop gain, the

Gain margin = -20log, 1G(z)|| = 10 dB (57)

[Glz) = 180°

and

Phase margin = 180 - /G(z)| = 50 deg (58)

[G(z)| = 0dB
To doublecheck the stability of our loop, let

C(z) = a,z* +a,2° (59)

P
+
+a22 +6112 dO

be the polynominal of the denominator of the closed loop
transfer function H(z) given by (51). The Jury stability test
(Ref. 3) requires that the following conditions be met:

1 Cc()>o0
2) C'-1)>0
(3) |a0|<a4=1 (60)
(4) by 1> 1by |
(5) 1C, |>IC2 |
where
a, a4y i
bk =
a, a,
(61)
B b, b3—k
Ck =
b3 bk

Using the nominal gain values of Table 1 to compute g, 4,
a,, a3, and a,, it is straightforward to show that these condi-
tions are met.

VIl. Steady State Error

For a parabolic input

0(r) = 6,12, (62)
the z-transform of the equivalent input in Fig. 4 is
6(s)\" '0'pTL3z(z2 +4z+1)
61() = (—S> = P (63)
6(z- 1)

Our transfer function now is defined as
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- _€2)
LEORE*& (64)
From Fig. 4,He(z) is
He(z) _Z- 1
G
X Q

LG((1-g)?%2% + (1428~ 2%)z +2°)(z4 + B)
(z- 1)? (z*-zC- D)

1

(65)
The steady state error is defined as
e =1lim e
S5 n
n —> oo
. z-1
= lim (—)H (z)0,(2) (66)
z € 1
z—1

Inserting (63) and (65) into (66) and letting z go to one, the
steady state error signal at sampling instants due to a parabolic
input is

4,7, (1-C-D)

T @B (67)

Equation (67) says that our subcarrier demodulation loop can
track a parabolic input with a finite steady state error which is
independent of the normalized computation time, g.

VIIl. Derivation of the State and Output
Equations

Using (33) in (37), the error signal evaluated at sample time

n-1is

1 .
€n-1 ~ GQ(TL¢n-1 3 T,*(1-2)9,

1T3<l_ 2)" _ZL_Z 2Ag +n
+§ L 3 g+g ¢n 2 g n—1 n-1

(68)

The error signal at time 7 - 2 can be expressed in terms of its
value at time n - 1, namely,
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_ 1.2 :
€2 - Op (TL¢n—1 "7, (+2)9,

jL3 1 jL2 -
EE 2) o - = )
+ > (3+g+g )<1>n 5 (1+28) A0, ,

2

L 2 AR
S & Aﬁn_2)+nn_2 (69)

Inserting (68) and (69) into (23) and combining terms gives

29, = G,T (A+B)g, |

T? .
+ 401 20)- B+ 2] 6,

+ -G, [A (%—g+g2)—3(%+g+g2)];;§”

T,? s
L .
+ {C— Gy (Ag” +B(1 + 2g))] a9

~

G N
__ Q72 2
+(D I, g B) Ab,_, *An,  *Bn,_,

2
(70)
Let
X = G,T, (4 +B)
T2
L
V= G, [A(1- 28)- B(1 +2g)]
2
- - _L_ 2
Y = C-Gy—5 [4g” +B(1 +2)]
T3
_ L 1. 2} (1 2]
W=- GQ[A<3 g+g) B 3+g+g)
G T?
U=D- QzL g%B (71)

Then, Eq. (70) can be rewritten as



+ YAen_1 + UAf)n_2 +A"n—1 +Bnn_2 (72)

Referring to Fig. 3, we have

x,(k+1) = x (k)

or
86, 4.y = 86, (73)
Inserting (72) into (28) gives
6, = - Xo_ - YA) -UMG _+(1- V)
+(T,-Wy¢ _,-An,_ - Bn _, (74)

Combining Egs. (31), (74), (72) and (73) in matrix form,
we obtain the State Equation:

9, 1T, o o\ [s,
3, -X 1-V -y -U ¢Sn_1
A, X v Y U Aén_]
Af 0 0 1 of \aég _
n—-2

L n-1
+
w A B 0 M,y
0 0 0 0 0
(75)
which is of the form
x(k+1) = Ax(k) + Bu(k) (76)

The Output Equation is (rewriting (68) in vector form):

1 5 K
= = T2(1. L ~
€, GQ (TL 27L (1-29) 8 O) Al
hn
Ab
G
T n
L1 2 n
+(GQ 7(§—g+g) 10 0) 77)
nnAI
0
which is of the form
ek) = D x(k)+ E u(k) (78)
The characteristics polynomial C(z) is
C(z) = det(zi - A) (79)

where A is the matrix defined in (76). Inserting 4 into (79),
we obtain

C(z) = det

3 (V-Y-2)+22QY-V-U+1+T,X)

+zQU-Y)- U (80)

Using the definitions of (71), we obtain

C@iz) = z*+[GA(1 -g)?* -2-C) 2°
+[2C-D+1+GA(1+2g-2¢%)+GB(1 - g)*] 2°

+[2D - C+GAg* + GB(1 +2g-2¢°)] z - D + GBg?
(81)
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Comparing (81) to the denominator of H(z) in Eq. (51), we
see that both polynomials are identical, as they should be.

The state equation given by (75_) will be needed to derive
the steady state values of ¢, ¢ and AG.

IX. Noise-Equivalent Bandwidth

Referring to Fig. 4, the closed loop transfer function H(z) is
given by Eq. (51). The one-sided noise-equivalent bandwidth is
defined as

L1 1 VH(z %
L 2T, H2(1) 2 H@E) HE) z (82)

It can be shown that

HY =1 (83)
for all values of 4, B, C, D, g and G.

To evaluate (82), we express H(z) of (51) as a ratio of
polynomials,

bz¥%+b z3+b z2+b,z+b
H(z) = — : 2 A (84)

4 3 L2
+ +
aoz +alz +a21 a3Z a4

and then make use of the results in Table I11.4 of Ref. 3.

If we define

/] = -1_

L5 $HEHE DS (85)

then, from Ref. 4 we have

_ a,B Q0 - 4,8,Q, +4,B,0, -4,B,0, +B,0,

4

2 2
4, [(ag -a3) Oy - (@ya, - a34,) Q,
86
+(aya, - a,a,) Q) - (aga; -a,a,) Q] (86)
where
_ 32 2 2 3 2
By = b +b2+b2+b]+b,

B, = 2byb, +bb, +b,b, +b.b,)
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B, = 2byb, +b b, +b,b,)

B, = 2byb, +b,b,)

3
B, = 2bb,
Qp = 24€,€4 " dya58, ta,la e - exe,)
Q) = aya,¢, " a,a,d, taylaa, - aye,)
0, = aya,¢, ~ ay8,¢, Ta,(a,037d5¢,)

Q, = a(a,e,~ ese,) - a,(a e, ~aze;) +aylee, ~aze,)
_ _ 2. 2
Q, = ayleyaya, ~agay) +ela,” - a,”)]

+ (622 N 652) [al(al N 03) + (ao -a,) (e4 N az)]

1 0o 2
e, T a ta,
e, = a2+a4
e, Ta,ta,
e, = a,ta, ta, (87)

Using the above results, the one-sided noise-equivalent band-
widths for given values of g, 4, B, C, D and G are listed in
Table 2.

X. Conclusion

The BBA’s subcarrier demodulation digital loop, a fourth-
order Costas-type loop, has been analyzed in this article. The
mean value and variance of the error signal have been found. A
block diagram in the z-domain has been obtained from which
optimum gains of the loop filter have been found. These gains
will keep the four poles of the transfer function on the real
axis inside the unit circle. The loop is able to track a parabolic
input with finite steady state error, as it is a type-2 analog
loop. One-sided noise-equivalent bandwidths for given values
of normalized computation time and gain values have been
given.
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Table 1. Loop gains for given pole locations®

Computation Time Factor

Filter
Gains g=0.0 g=0.25 g=0.5
A 0.5248 0.5390 0.5632
B -0.4180 -0.4422 -0.4664
C -0.4852 -0.6968 -0.8592
D -0.0036 -0.0312 -0.1202
apl =p2=-0.1. p3=p4=0.6. G =1.0.

Table 2. Noise-equivalent one-sided bandwidth in Hz for
gains A, B, C and D given in Table 1

Computation Time Factor

Gain

G g=0.0 g=0.25 g=0.5
1.0 0.3324 0.3858 0.4395
0.5 0.1696 0.1744 0.1814
0.1 0.0792 0.0768 0.0748
0.01 0.0620 0.0604 0.0589
0.001 0.0603 0.0588 0.0573
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Fig. 1. Subcarrier demodulation loop
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Fig. 2. Phase rate (a) error, and (b) DCO output
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Fig. 3. Closed loop hybrid s/z diagram. Note that a conventional DCO does not include the
z/(z — 1) transfer function as shown here as an integral part of the DCO board.
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Fig. 4. Equivalent z-domain block diagram
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Fig. 7. Bode diagram of G(z) for nominal gains



